user2vec: user modeling using LSTM networks

Konrad Zota

KONRAD.ZOLNA @IM.UJ.EDU.PL

Jagiellonian University, Institute of Mathematics, Cracow, Poland

RTB House, Warsaw, Poland

Bartlomiej Romanski
RTB House, Warsaw, Poland

Abstract

The LSTM model presented is capable of de-
scribing a user of a particular website with-
out human expert supervision. In other words,
the model is able to automatically craft features
which depict attitude, intention and the overall
state of a user. This effect is achieved by pro-
jecting the complex history of the user (sequence
data corresponding to his actions on the website)
into fixed sized vectors of real numbers. The
representation obtained may be used to enrich
typical models used in RTB: click-through rate
(CTR), conversion rate (CR) etc.

The enriched CR model is capable of learning
from wider data since it indirectly analyzes all
actions of an advertiser’s website users, not only
those users who clicked on an ad.

1. Introduction

Real-time bidding (RTB) is an online advertising auction-
based model where the advertiser valuates every single im-
pression opportunity. Advertisers submit their bids and the
winner gets the right to display an ad. A bid value is usu-
ally based on a predicted impression value evaluated using
low level features such as the history of the user’s activity
on the advertiser’s webpage or the size of the ad slot.

Click-through or conversion predictions play a critical part
in many advertising applications (Zhang et al., 2016). Pre-
dicting click-through rate (CTR) provides the advertisers
with ability to target ads at the users who are more likely
to click. Accurate predictions of conversion rates (CR) are
crucial to buy traffic composed of the users who are most
likely to convert after clicking on the displayed advertise-

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

BARTLOMIEJ.ROMANSKI@RTBHOUSE.COM

ment. Nowadays CTR models used in business are mostly
linear (Zhang et al., 2016): logistic regression (Richardson
et al., 2007), naive Bayes (Hand & Yu, 2001) etc. The ma-
jority of them use categorical features which are one-hot
encoded prior to processing (Beck & Woolf, 2000).

Due to high technical requirements in the RTB ecosystem
advertisers hardly ever participate in auctions directly. In-
stead they rely on third-party technology providers — de-
mand side platforms (DSPs). A DSP, like RTB House, typ-
ically runs campaigns for a few hundred or few thousand
advertisers. At every bid request evaluation all advertisers
that pass pre-selection (e.g. had previous interaction) are
separately evaluated and the one with the highest predicted
value is chosen to be sent in the bid response. In this work
we focus on building and evaluating a dedicated CR model
for one of our largest customers.

In RTB data come from two sources:

e user-based: mainly history of the user’s previous ac-
tions on the advertiser’s website,

e context-based: e.g. the URL of the page where auc-
tioned ad is going to be displayed or the size of the ad
slot.

A user generates data by performing actions on the adver-
tiser’s website. These actions (events) are typically divided
into a few types, e.g.: visiting home page, viewing prod-
uct details or adding product to the basket. All events
are tracked and anonymously linked to the users. Hence,
the data which describe the user is a list of consecutive
events with meaningful ordering and time gaps between the
events. Data collected for the users vary in size — there is a
significant number of users who only visited a home page
once, but also there are users who visit the advertiser’s web-
site frequently.

Since our data are sequential we decided to use the model
suited for a task of this kind — a recurrent neural network

user2vec: user modeling using LSTM networks

(RNN) (Goller & Kchler, 1996). It is a subclass of artifi-
cial neural networks which are able to cope with sequen-
tial data of varying sizes and therefore match our setup.
Long short-term memory (LSTM) is a special case of the
RNN architecture which has been proven to be well-suited
to learn long-term dependencies (Hochreiter & Schmidhu-
ber, 1997).

In the RTB setup, evaluation has to be incredibly fast which
makes a larger part of very sophisticated models unusable.
A RNN uses sequential data and has to process events in
right order, one after the other. It can’t be easily paral-
lelized. Every application of RNN models in RTB has to
be implemented in a way that enables pre-processing to a
great degree. In our solution we have addressed this prob-
lem as well.

Ordinary methods for learning CR models snapshot user-
based data at the moment of an impression. This way of
learning limits the data available, because only clicked im-
pressions are considered during the training procedure. An-
other problem relates to the fact that the data are unbal-
anced since the vast majority of the users do not convert
after clicking the ad. We argue that very low number of
positive observations (clicks, convervions, and, most im-
portantly, post-click conversions —i.e. conversions that oc-
cured shortly after clicks) is the main limiting factor for
learning better models in a classical approach. The LSTM
model proposed in this paper learns from all events, hence
all collected data are used. Even, the users who have not
seen any ad are included. Since often less than 1% of the
users click on ads, this approach typically results in over
two orders of magnitute larger training datasets.

In the following chapters we present a method that has the
ability to automatically craft features which depicting at-
titude, intention and the overall state of a user. Applying
our method to the problem of predicting conversion rates
results in more powerful models.

2. The main idea

The main idea is based on training an LSTM model which
calculates more reliable, richer, machine-interpretable de-
scription of the user without human expert supervision. To
our knowledge this is the first usage of an LSTM model
in RTB application. Typically the history of the user is
projected into a fixed number of manually-crafted features
which are believed to help in predicting probability of con-
version at the time of clicking the impression. Features can
be either continuous like time gap between bid request and
last visit, or boolean like has the user added any product
to the basket recently. The biggest inconveniences of this
approach are:

e manual crafting requires a human expert whose work
is laborious and expensive;

e usefulness of features may depend on the advertiser,
so a human has to revise them frequently and re-
explore for every new advertiser;

o features have to compress the entire history of the user
at once and answer (at least partially) a very general
question Is the user likely to convert?;

e since features are snapshot at the time of the impres-
sion, models don’t learn from events which follow the
last impression of the user and ignores the data for
users who have never seen any impressions.

Our solution overcomes all these problems. Our LSTM
model automatically projects the user’s state into a fixed
size vector in an advertiser-dependent way that does not
require additional work of a human expert. This projection
is called user2vec since it is analogous to the well-known
word2vec (Mikolov et al., 2013). Once a representation of
this kind is obtained, one may add these new features to an
existing CR model in order to enrich it.

3. Our LSTM model and user2vec

For a fixed advertiser and for every user our RNN model
is fed sequentially with every event originating from the
user’s activity on the advertiser’s website. Hence, a single
input for the user is the sequence of all the events and tar-
gets are answers to a fixed list of a few questions asked at
the time of every event. These questions describe the user’s
attitude and may include:

e What is the next event (visiting home page, browsing
product listing, viewing product details, adding prod-
uct to the basket etc.)?

o What is the time gap to the next event/conversion?

e What is the category of the next product visited?

Our LSTM model is sequential in structure and has a form
as shown in figure 1. The consecutive layers are described
below.

1. Input. Input to a single step is represented as a vector
of seven real numbers:

(a) one-hot encoded type of the event with six possi-
ble corresponding values:
i. visiting home page
ii. browsing product listing
iii. viewing product details

user2vec: user modeling using LSTM networks

1b. Event time

[racemwe) 1. o
Iss
| %

2. First LSTM layer

s 7

[3. Second LSTM layer
@ @ @ @ @ @ 4. Vanilla

0 0 0 G E T

networks
o oo o oo "

0 0 D D

Figure 1. Structure of our LSTM model

iv. adding product to the basket
V. conversion
vi. one special event which is added in the end
of each user history (after last event)

(b) logarithmized and normalized time to the previ-
ous event

2. First LSTM layer. A layer with 300 memory cells
and dropout (p = 0.15) was used.

3. Second LSTM layer. A layer with 100 memory cells
and dropout (p = 0.15) was used.

4. Vanilla neural networks. At each step output of the
second LSTM layer is replicated and used by six in-
dependent vanilla neural networks. Each network has
one hidden layer with 30 neurons, ReLU activation
function and uses dropout (p = 0.15).

5. Final output. Each network ends with either sigmoid
or softmax to match the number of target options:

(a) Will the user come back in less than 30 days after
this session" ends?

(b) What is the type of the next event?

(c) Will this session end in 20 secs / 2 mins / 20 mins
/ more than 20 mins?

(d) Will the next session start in 16 hrs / more than
16 hrs / never?

(e) Will the next conversion be in this session / after
this session / never?

(f) Will the user convert in the next 30 days?

Exemplar input to the LSTM model is presented in figure 2.

This way of training model to predict a variety of tasks is
an approach called multi-task learning. It is known that

ISession is defined as a sequence of events where the maxi-
mum time gap between them is less than 20 minutes.

—
'

]

(1,0,0,0,0,0; 1.000)

[[Visiting home page }

q

[Browsing product listing H 1 minute H

(0,1,0,0,0,0; 0.440)

[Viewing product details

30 seconds H
(0,0,1,0,0,0; 0.412)

[Viewing product details

20 seconds H
(0,0,1,0,0,0; 0.396)

2 minutes H
(0,1,0,0,0,0; 0.468)

[Viewing product details 10 seconds H

(0,0,1,0,0,0; 0.368)

sas |

(0,0,1,0,0,0; 0.775)

[Viewing product details

[
[
[
(rovsingpoducsing
[
[
[

[Conversion

40 seconds]]

NSNSNSNENSNEE

(0,0,0,0,1,0; 0.424)

Figure 2. Sequential input to our LSTM model. In the first session
a user visited home page, viewed details of three products with
browsing two listings between. The second session (3 days after
the first one) is started by browsing product details and finalizes
with a conversion. The figure also shows how these actions are
encoded to be interpretable by the LSTM model: one-hot encoded
event’s type first and normalized time to the previous event last
(see the description of the input layer).

it results in obtaining better model by using commonality
among the tasks (Thrun, 1996).

It is important to note that the state of every LSTM model
is stored in two fixed size vectors of real numbers called the
memory cells and the last output. Since our LSTM model is
trained to predict user’s behavior, elements of these vectors
are the natural candidates for the user-dependent features
(they depict a user’s state). They can be extended by the
resulting predictions (answers to the questions).

Our LSTM model may also be trained to answer only one
local question What would be the next user action? (or
equivalently What would be the type of the next event?). It
is a very general question, but we found that the relevant
model performs only slightly inferior to the one trained
against the fully-featured set of targets. By choosing com-
pletely different questions one may tune learned represen-
tations to match another specific needs.

This way 218 new features are obtained from the memory
cells (100) and the last output (100) of the second LSTM
layer and from the final output (18).

user2vec: user modeling using LSTM networks

We believe that this way of creating features (user2vec) en-
riches the CR model because LSTM is able to find a pat-
tern of users’ decision making by learning from much more
numerous data (not only those connected with clicked im-
pressions). It results in creating expressive features which
are advertiser-dependent.

Our experiments showed that it was easier for the LSTM to
predict classes instead of real values. Hence, in questions
(c), (d) and (e) softmax was used for clustered values.

It is worth keeping in mind that the values from the mem-
ory cells aren’t normally distributed and it is not trivial to
normalize them. They were clipped to the range (-5, 5)
and divided by 5 afterwards, so to fit in the (-1, 1) range.
This wasn’t an issue in the case of the values from the last
output.

4. Model comparison

Effectiveness of user2vec has been established with the
comparison described below. The base was a CR model
using a set of 20 handcrafted features (called core fea-
tures), based on both context- and user’s history-related
data, available to the model in the production environment.
Core features had been crafted by a human expert and
were extracted using baseline feature extraction methods
like counting (e.g. number of products added to the basket
in the last session of the user). All of the core features
were treated as categorical ones (quantitative ones were
projected into pre-computed intervals).

Two CR models were considered, each one in two ver-
sions — a core version (without additional features obtained
from user2vec) and an extended version (with user2vec fea-
tures).

Since there may be more than one conversion following a
click to an ad, a target to a CR model may be any integer.
Hence, binary logarithmic loss can’t be used as a criterion.
Instead targets were assumed to be Poisson distributed and
a Poisson criterion was used (negative loglikelihood of the
Poisson distribution).

The first model considered was a Poisson regression, a sim-
ple modification to a widely used in online advertising lo-
gistic regression (Zhang et al., 2016). All core features
were one-hot coded. In the extended version the additional
features were treated as continuous ones. The abbrevia-
tions used for those models are respectively PR and PR +
LSTM.

The second model was a deep neural network based on the
same features. Core features were coded using an embed-
ding layer. In the extended version user2vec features were
added on the level of the embeding layer’s output. This
model also aims at predicting the mean of the assumed

Poisson distribution. The abbreviations used for the models
are respectively DNN and DNN + LSTM.

All models can be easily compared since the same criterion
was used in all cases (negative loglikelihood of the Pois-
son distribution on the test set). We decided to incorporate
DNN to our considerations in order to show that the usage
of user2vec features can’t be easily replaced by training a
more complex CR model.

5. Data

The data used in the experiment describe traffic on the web-
site of one of our biggest customers (advertiser). They were
divided chronologically into a train set (January 1, 2015 —
November 15, 2015) and a test set (November 16, 2015 —
December 31, 2015).

In this case conversion was a not very demanding action
(more than 30% clickers convert) and an average number
of conversions for the converters was more than 1.5.

The lengths of user histories in our dataset vary a lot. Num-
ber of events for a user starts from two (users who per-
formed only one event had been excluded) to several thou-
sands with the mean, median, the third quartile and the
ninth decile equal about 20, 4, 7 and 31 respectively.

6. Experiments

All CR models were trained using the gradient descent
strategy and steps were calculated using RMSProp (Tiele-
man & Hinton, 2012). The early stopping condition was
to wait for the 10th iteration in a row without any progress
on the validation set (a small subset of the train set). Ex-
amples of all four learning curves are shown in figure 3.
Bear in mind that there is a logarithmic scale for epochs to
make plot more lucid (number of epochs needed to fulfill
the stopping condition varies greatly per model).

A few learning procedures has been perfomed per model
and results were very similar (£ 0.1%).

1.06
PR —+—

DNN —¢—

1.04 PR + LSTM

DNN + LSTM

Test error

0.98

0.96

0.94

1 10 100 1000
Epoch

Figure 3. Learning curves for all four models

user2vec: user modeling using LSTM networks

Table 1. Test error achieved by all considered models

MODEL NAME TEST ERROR IMPROVEMENT
PR 1.0076 0.00%
DNN 0.9897 1.78%
PR + LSTM 0.9538 5.34%
DNN + LSTM 0.9383 6.88%
DNN + LSTM — CORE 0.9626 4.47%

Difference between PR and PR + LSTM scores is signif-
icant. Using the LSTM features is 3 times more profitable
than using a more advanced and more sophisticated CR
model (see table 1). In contrast to DNN, PR isn’t able to
see and use correlations between features and DNN uses a
more sophisticated encoding. Note that this noticeable im-
provement in CR model is much less beneficial than adding
LSTM features.

It is also worth pointing out that gains from using a better
model and using user2vec features are orthogonal, hence
the better model with additional features (DNN + LSTM)
seems to have double benefits and has the best score.

The handcrafted features can be completely ignored and
DNN + LSTM — Core model which uses only user2vec
features (without embedding layer) can be trained. This re-
sulted in obtaining test error 0.9626 which is 4.46% better
than pure PR and 2.74% better than DNN. It means that the
LSTM is able to recover a lot of information contained in
the handcrafted features. Even theoretically it is not able to
recover all of them, because without handcrafted features
model doesn’t have any impression context data. The score
is surprisingly high. It is possible since the LSTM is able
to describe the user profile better than a human expert and
user data is crucial in the CR task (impression context in-
formation isn’t that important once a user clicked on an ad).

As in (Karpathy et al., 2015) values of the LSTM cells can
be analysed. It turned out that our LSTM model keeps track
of interpretable attributes like how many offers has the user
seen, has the user put any product into the basket or how
many events has the user performed. These values are sim-
ilar to the handcrafted features.

7. Conclusion and current directions

The LSTM model was used to produce user2vec which
projects history of an individual user into a fixed sized
vector which may be treated as a set of new features. It
turned out that additional features enriched the CR model
to a great degree. This approach doesn’t need any human
expertise. The LSTM model is able to learn from every ac-
tion on an advertiser’s website, so much more data are used
as compared to the ordinary CR models.

The projection obtained is general and can be used to enrich
not only the CR models. In fact it can be used in every
case where the users produce sequential data by performing
consecutive actions.

The LSTM can be fed with more detailed descriptions of
the event (not just a type and time from the previous one).
For example, for a viewed product, the LSTM can also get
the identifier of the product. It may result in two bene-
fits. First, the projection is more sophisticated and accurate.
Second, it can perform useful hallucination (Graves, 2013).
The LSTM may be used to model not only the current state
of the user but also to predict the state after a faked event
(for instance viewing an individual product). The LSTM
can hallucinate for all possible products and the one which
leads to the best CR prediction may be put on an ad.

Software

For training the LSTM model the rnn Torch library was
used (Léonard et al., 2015). The rest of the models were
implemended by ourselves (also in Torch).

Acknowledgements

We would like to thank Karol and other colleagues for their
guidance. We would also like to thank reviewers who gave
useful comments.

References

Beck, J.E. and Woolf, B. Park. High-level student modeling
with machine learning. Springer, 2nd edition, 2000.

Goller, C. and Kchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. Neural Networks, 1996.

Graves, Alex. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

Hand, D.J. and Yu, K. Idiots bayes not so stupid after all?
Int. Statist, 69(3):385-398, 2001.

Hochreiter, S. and Schmidhuber, J. Long short-term mem-
ory. Neural Computation, 9(8):1735-1780, 1997.

Karpathy, Andrej, Johnson, Justin, and Li, Fei-Fei. Vi-
sualizing and understanding recurrent networks. CoRR,
abs/1506.02078, 2015.

Léonard, Nicholas, Waghmare, Sagar, Wang, Yang, and
Kim, Jin-Hwa. rnn : Recurrent library for torch. CoRR,
abs/1511.07889, 2015. URL http://arxiv.org/
abs/1511.07889.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. Distributed representations of words and

http://arxiv.org/abs/1511.07889
http://arxiv.org/abs/1511.07889

user2vec: user modeling using LSTM networks

phrases and their compositionality. In Burges, C. J. C.,
Bottou, L., Welling, M., Ghahramani, Z., and Wein-
berger, K. Q. (eds.), Advances in Neural Information
Processing Systems 26, pp. 3111-3119. Curran Asso-
ciates, Inc., 2013.

Richardson, M., Dominowska, E., and Ragno, R. Predict-
ing clicks: estimating the click-through rate for new ads.
In ACM, pp. 521-530, 2007.

Thrun, Sebastian. Is learning the n-th thing any easier than
learning the first? In Advances in Neural Information
Processing Systems, pp. 640—-646. The MIT Press, 1996.

Tieleman, T. and Hinton, G. Lecture 6.5 - rmsprop, neu-
ral networks for machine learning. Technical report,
COURSERA, 2012.

Zhang, W., Du, T., and Wang, J. Deep learning over multi-
field categorical data: A case study on user response pre-
diction. In ECIR, 2016.

